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GAS TURBINE AND DUCT BURNER LOAD CONTROL
FOR HIGH RAMP RATE ANCILLARY SERVICES

Summary

This case study describes the deployment of software to optimize duct burner d$patch
Dynegyo0s | GahergiirgSiatoa. Tle@as turbine (GT) fast ramping capability is bid
into the NYISO Regulation Ancillary Services Market. The total capacity of the gas turbine and
steam turbine, including additional power generated from dungfirs bid into the energy

market. The software optimizes the net economic benefits by minimizing duct firing and its
undesirable heat rate (fuel cost) impact. Several neural network models were developed to
predict neaterm plant demand and estimateikal@e generating capacity given grid and

ambient weather conditions along with a plant equipment response model. These inputs are then
used in reatime to optimize duct burner operation. Using the dispatch optimizer to more closely
follow predicted demathis estimated to save between $875,000 and $1.2 million in fuel costs
per year. Dynegy found that the new control applications have resulted in a more efficient
dispatch of their duct burners and an overall fuel savings as compared to their initiahgperat
characteristics

Background

Independence Station is owned by Dynegy Inc. and is located in Oswego, New York. The station
consists of two blocks of-@8n-1 combined cycle units with each unit having two GE 7FA gas

turbines with 157 MW capacity each, tMogt heatrecovery steam generators (HRSG) with
supplementarfired duct burners (22 MW capacity each), and one steam turbine (ST) with 206

MW capacity. The HRSG and Balance of Plant (BOP) Distributed Control Systems (DCS) are
supplied by Metso, andthegpht 6 s hi st ori cal data is stored i
supplier of ProcessLink, a modeling, optimization and analytics software platform. The plant is

bid into the NYISO Energy and Regulation markets as four pseudo units.

A Regulation marketghe of several Ancillary Service markets) in the zone of operations is
administered by NYISO, the independent system operator for New York. This market trades fast
ramp rate power as a dapead and redgime commodity to complement variable wind

generatio input and any other demand variance

The Challenge

When the electricity grid experiences shiertm temporary changes in overall demand, the
system operator must compensate or fAregul atebo
services produs provided by generators deal with these imbalances in electricity markets by
dispatching resources within seconds or minutes. As the use of intermittent renewable generation
capacity like wind and solar power has increased, so has the need for thes=dlsaration

regulating or fast responding resources



When Dynegy bids power from Independence Station into the Ancillary Services Regulation
marketi t qual i fies that energy in terms of #@Aramp
maximum sustainecamp (in MWs) available.

The plant began bidding its power into the Ancillary Services Regulation market in 2010. Prior
to 201Q the Independence plant was dispatched like most other combined cycle plants with duct
burners. Historically, the plant used duct burners only when demand and power prices were
high. The increment of duct burner power was generally offered into the NYISO Energy market
at a significantly higher cost because the supplemefitad/duct burners provide power at a

higher heat ra& than power from the combined cycle block. Fuel energy released through
combustion in the duct burners is absorbed only in the Rankine (bottoming) HRSG steam cycle,
whereas fuel energy released by combustion in the GT is absorbed by both the Braytog)(topp
cycle and the Rankine (bottoming) cycle.

Each gas turbine can ramp up & MW per minute. In contrast, the steam turbine has a much
slower ramp rate of-2 MW/min, and steam turbine output can lag energy input from gas turbine
exhaust or duct buen firing by as much as 30 minutes
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Figure 6-1
Differences in Heat Rate between Steam Cycle and Combined Cycle

Figure6-1 shows the effect of diverting fuel directly to the HRSG via Duct Burner combustion.
The duct burner produces power at a heat rate of ~9,000 Btu&wWa6 kJ/kWh)while the

combined cycle produces power at the heat rate of ~7,500 Btu/K@/A8B kJ/kWh) The Duct

Burner is used to boost ST output to compensate for the paltiathed GT. The circled green

power output bar represents a GT with some reserve capacity to provide fast ramp rate power, if
necessary. Note the heat rate of dushler power is greater than the heat rate of the combined
cycle. Figure6-2 shows a typical demand curve and the occasional use of duct burners. In
Figure6-2, the 30minute period shaded in green represents the time when the duct burner is



optimally online. It needs to come online 30 minutes before the demand goes over thengotted
(max MW capability of the GTs only) to account for the lag of output from the steam turbine .

The principle of the original modified operation and control is showsigare6-1 looking at the

green fAipower barso. The gas turbine was kept
burner. With the duct burners deployed before the gas turbine has reached full load, some high
ramp rate capacity (from tlgas turbine) is available to be bid and dispatched into the Ancillary
Services Regulation market when needed. The plant is more capable of responding at high ramp
rates so it obtains a higher capacity factor, albeit at a higher heat rate. At Indepgihdence

believed the ability to offer higher total MW capability, and a large total increment of high (GT

like) ramp rate regulation service, led to a significantly improved overall capacity factor and
improved overall economics for the plant

Initially, plant engineering staff automated duct burner startup and shutdown in 2010 to pursue
this strategy of reserving plant high ramp rate capability. Next, a control algorithm was added to
the existing Metso HRSG control system that starts and stops ductdbbased on the GT Inlet
Guide Vane (IGV) angle and controls duct burner (DB) fuel flow based on unit demand,
combined with fixed assumptions about how much DB energy is needed in a worst case ramp
up. This control scheme was initially set conservatitelgnsure NYISO demand was always
capable of being met, as showrFigure6-3. The yellow shaded period shows the time that the
duct burners operate with this initontrol schemgwhichis much greater than what is required
(green shaded period).

Despite the significant cost increase associated with this conservative mode of operation, the
revenue gain resulting from offering additional higimprate capability mee than offsetthe
elevated cost. To further optimize operations, Dynegy recognized unit capabilities could be
adjusted for ambient conditions and equipment health. Additionally, due to the steam turbine
output lag following duct burner ignition, a pretive view of future ramp rate and output level
had the potential to unlock additional value and provide optimization.

In discussions NeuClead with the Independence plant in early 2013, the plant indicated that
they knew they were running with more duct burner input than necessary to meet the NYISO
demand, anthey werecycling the duct burners more than they would be if they had some
prediction of the demand signal over the next thirty minutes. NeuCo took up the challenge of
exploring the usefulness of machine learning to augment the duct burner dispatch algorithm by
providing additional information.

Figure6-2, Figure6-3, andFigure6-4 show the automated duct burner operation challenge and

the principle of the optimizationkigure6-4 shows the idealized operation of the duct burner

after implementation of the NeuCo optimizer. Hexe pr edi cti on of the A30
NYI SO demando (violet dotted Iine) is generat
line is greater than the max capability of the GTs (red dotted line). In thidheagperational

period for the duct burners (yellow shaded area) is reduced compared to the yellow area in
Figure6-3.
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Figure 6-2
Typical Demand Curve
Note Duct Burner energy is only needed when the plant gets ramped above the GT only capability line, at GT ramp

rate. Because ittakesbout 30 minutes to fully add a Duct Burnerds
to 30 minutes in the future. Another challenge is predicting how much of that energy is.needed

| Duct burners were turned on when GT IGV angle > 74° |
hﬁ\
""""""""" T
n A | Ik ‘J\
' | H““L-IJ (g v
= ,I'IL'v" "l [ LY
7/ Duct W o
burners Y ﬂ'j
Iq(,‘."h"‘.\-.l | required ‘1.1 : {,4‘.
2 L Yyl pafAN Y
W . P Duct burners . rfll '
VWA operating M

Figure 6-3
Initial (Conservative) Approach for Faster Response

Note the conservative (historical) approach to staging the plant for possible NYISO demand ramp involves turning
the Duct Burners on very early to cover the entire potential high demand.period
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Figure 6-4
Optimized Control Strategy

Note keing able to predict the likely NYISO demand for the next 30 minutes and thus bound demand optimizes DB
usage

Description of Software Technology

Pr ocessLi nk-limesnapiesynbdeding and aptimization platform based on the
vision that

a) Atrtificial Intelligence (Al) technologies need to be plugged directly into-datsams; their
utility is largely unexplored territory, but they usually require ensemble oichgbproaches
and must be capable of cost effective evolution

b) Software development should be evolutite, constrained by the requiremehatit
deliversvalue in a commercial context

ProcessLink is designed to provide anlioe (in situ) analys, modeling, optimization and
visualization workbench, tailored to industrial use. It supports a large variety of technologies
across an integrated architecture allowing for ensemble and hybrid Al approaches to be
prototyped, deployed, evaluated, and egdhlagainst complex realorld problems.

The platform uses a combination of neural models, expert systems, first principles models, and
dynamic optimization as illustrated Figure6-5. Neural networks are nonlinear, multivariable
steadystate models that are used to identify the best combinations of variables under varying
conditions through observation of data. First pipte models are based on scientific laws and
principles rather than immediate empirical data. Expert systems opportunistically leverage
known empirical relationships to assemble +odsed models.

ProcessLink is an enterprigade clientserver object (atk and drag) environment with a C#
backbone, designed to integrate disparate data sources and support distributed collaboration. The
optimizer assembled for this application required no new ProcessLink code developmenf. Rather
it is an assembly of readg-use building blocks wired together, supported by C# scripts where
needed.



ProcessLinko6s early devel opment was partially
CoalPower Corporate Agreements. Dynegy was a key participant in one of those projects

ProcessLink Studio™ End-User Interface
Product Application conti A
Installation | | Application | | Deployment Optimizer SLLLLEEE ’ ’
and Prototyping and Demystification R:J“’:“'?‘e D'ag[':jm's
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Tools Tools
ProcessLink® Engine A
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Figure 6-5
The ProcessLink Platform

Duct Burner Optimization Application Components

NeuCobs Psotewatbentwas installed at Dynegybs |
The final optimizer determines the likely maximum raogpin the next 30 minutes. It then
determines how much duct burner energy, i f an

to meet that request. The major components employed by the optimizer are

1) AMax Li kel y Diearsat af cootinupudhiadapting neural models to predict
likely future (next 30 minutes) demand variance

2) APl ant Max Caipaaodtherlsat dfonthuo(siad&pding neural models
combined with a simplefirgtr i nci pl es model to p-mewe ct t he
generation response

3y ibynami c Pl aniadyrmadierodel of tbeRiiig delay relationships between
the GT and the HRSGteamturbine generators

4) A Model Predicti ve CoinAnoptirhiZzerdhat/d€@grminesoptanalr 6 ( MP C
control trajectories based on a dynamic response model that relates manipulated variables to
controlled variables (or objectives).

These differat model types and instances are integrated through a dtogedptimization

assembly. The resulting hybrid evaluates the likelihood of a specific demand increase in the next
30 minutes, tests that against the 30 minute capability of the plant giwemrgst configuration

to determine whether adding or subtracting a duct burner is warranted, then uses a dynamic
model to schedule the duct burner fuel flow. Inputs to the future demand variance models include
recent demand history, current demand, dahefwveek, hour of the day, and gas turbine



generator driven frequency. The neural networks involved retrain daily. The final ensemble
applies smoothing and tuning terms

AMax Likely Demando predictor model

Predicting the future maximum likely demand ané by combining multiple models and
technigues. Some of the model inputs include:

1 Total (combined) output of the GT and Bmultiple values for this input represent historical
tap delays. (Note: this is used in place of demand values due to data biyaediathe start of
the project and are meant to serve as a proxy for current and historical NYISO demand)

1 External forcing frequency of the GT generdt@@d ded at t he suggestion
engineering staff; frequency droop tends to indicate an maniincrease in demand.

1 Hour of dayi the most important of the tirrelated inputs.

91 Day of the week to include weekday/weekend changes.

1 Monthi to include seasonal trends.

Once the logic was established, the model was tuned based on historical dataaRtydre

6-6 compares historical demand (in orange) with an aggresdivelyn e d A Max Li kel y D

predictor model (in blue). This figuracludesa two-day sparshowing predicted 30 minute
maximum demand augmented with expert rules related to recent demand ramp

EnsPredMaxDmd.rawresult EnsPredMaxDmd.result DmdAndProd (used).PlantBasePoint

(MW)

10:47 PM 8:23AM 6:00 PM 3:37AM 1:14PM 10:47 PM

Figure 6-6
Typical Historical and Predicted Demand

The model i's further refined with the additio
The fAkickero detects the type of ramp through
demand changes, which enables the model to respond to avaifabheation about a severe

ramp while it is occurring. The fAkickero tuni
ramp shapdilter + responseamplifier. Once the model and its tuning were established, the

model 6s ef fect i vcaldemmansl wadsmeapuree.di ct hi st or

Figure6-7 shows the plant demand and MW signals along with the maximum predicted plant
capability with duct burners (light blue) and without (yellow, the-@ily line). The figure



clearlyshowsduringthis two-day period where demand required duct burner operation. The

APl ant Max Capabilityo predictor model i's dis
AMax Likely Demando predictor model aoneddnd by t
rational ways to minimize the negative effects of prediction error; for instance it must always be

a minimum (tunable) amount above current demand as an additional backstop. Also, the amount

of duct burner headroom needed is set to zero, regamfidse max demand prediction, when

actual demand is below the GT only capability by a maximum (tunable) amount
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Figure 6-7
Historical Demand, Prediction, and Available Capacity

Figure6-8 shows six hours from the first morning of the tday span irFigure6-10. During
this morning of operation, the plant was operating in regulation mode (at GT ramp rate) and was
brought across the Gdnly capability threshold
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Figure 6-8
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Figure6-9 shows the distribution of 30 minute demand changes over the same six hour interval
asFigure6-8. This distributiorrepresergtypical morning operations on a fairly high demand
day (including regulation demand).

Figure 6-9
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Figure6-10 shows the NYISO instantaneous Regulation Performance Index (PI) for Ancillary
Service Providers (in yellow) and the seaxday Regulation PI rolling average (in red). A value

of 1 indicates perfect performance. N\ takes action against the generator if the selegn

rolling average falls below 0.75. The Performance Index values are calculated in ProcessLink per
the guidelines in the NYISO Regulation Ancillary Services Settlement Manual, Appendix G7
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Figure 6-10
Demand and Production for Six-Hour Period of Morning Operation with Regulation Performance
Index, and Regulation Pl 7d Average

APl ant Max Capabilityo predictor model

A very simpl e i Pgredictar mada was @edpnahe initial optnizer. It

employed the manufactursupplied GT capability correction curves to account for ambient
temperature. Results from the initial optimiz
and the st mdax G&®pabilityo predictor model | o«
beta optimizer version added a new APl ant Max
a set of hybrid neural/firgtrinciples models of each GT and Steam Turbine to predict plan

maximum output capability as a function of the current ambient conditions.

Figure6-11compar es one of the neural AGT Maon Capab
over a tweweek time span. The GT max prediction shown is a function of current weather

conditions and one component of the overall plant max capability model. It is depicted here to
illustrate how a neural network can be used to predict equipment mnaxo@pabilities and how

error in those predictions can be evaluatejure6-12 shows the performance of the model in

terms of overand undesprediction events, afm with the average error in MW for those events.
Underprediction occurs when actual output exceeds predicted max outpuip@dstion

occurs when the GT control state signals indicate the GT is at maximum output, but actual output

is below the predietd maximum
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Figure 6-11
GT Max Ca pPaetidgtar iMbdgl@utput (as a function of ambient conditions) Compared with
Actual Generation

Figure 6-12
Under- and Over -prediction Event s f or A GT Mraerictof Mpdelbi | it yo

ADynamic Pl ant Model 0

A AiDynamic Plant Model 6 was derived from pl an
gain relationships between fuel flow (to both GT and DB), grid oujgant total output as well

as GT and ST considered separately) and GT headroom (i.e., available rapid ramp capability in

the next 30 minutes).

The final version of the optimizer, shownkigure6-13, is currentlyin service in closetbop.

The optimizer now i nMotebd éMotdlee MPDyma o ¢ d Rl e tn
components specific to benefits assessment (discusseckinti Resul t s0 section o
The Model Predictive Controller uses the dynamic plant model and inputs from three major sub
models to determine required actions






