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6  
GAS TURBINE AND DUCT  BURNER LOAD CONTROL 
FOR HIGH RAMP RATE A NCILLARY SERVICES  

Summary  

This case study describes the deployment of software to optimize duct burner dispatch of 

Dynegyôs Independence Generating Station. The gas turbine (GT) fast ramping capability is bid 

into the NYISO Regulation Ancillary Services Market.  The total capacity of the gas turbine and 

steam turbine, including additional power generated from duct firing, is bid into the energy 

market. The software optimizes the net economic benefits by minimizing duct firing and its 

undesirable heat rate (fuel cost) impact.  Several neural network models were developed to 

predict near-term plant demand and estimate available generating capacity given grid and 

ambient weather conditions along with a plant equipment response model. These inputs are then 

used in real-time to optimize duct burner operation. Using the dispatch optimizer to more closely 

follow predicted demand is estimated to save between $875,000 and $1.2 million in fuel costs 

per year. Dynegy found that the new control applications have resulted in a more efficient 

dispatch of their duct burners and an overall fuel savings as compared to their initial operating 

characteristics. 

Background  

Independence Station is owned by Dynegy Inc. and is located in Oswego, New York. The station 

consists of two blocks of 2-on-1 combined cycle units with each unit having two GE 7FA gas 

turbines with 157 MW capacity each, two Vogt heat recovery steam generators (HRSG) with 

supplementary-fired duct burners (22 MW capacity each), and one steam turbine (ST) with 206 

MW capacity. The HRSG and Balance of Plant (BOP) Distributed Control Systems (DCS) are 

supplied by Metso, and the plantôs historical data is stored in an OSI PI server. NeuCo is the 

supplier of ProcessLink, a modeling, optimization and analytics software platform.  The plant is 

bid into the NYISO Energy and Regulation markets as four pseudo units.  

A Regulation market (one of several Ancillary Service markets) in the zone of operations is 

administered by NYISO, the independent system operator for New York. This market trades fast 

ramp rate power as a day-ahead and real-time commodity to complement variable wind 

generation input and any other demand variance.   

The Challenge  

When the electricity grid experiences short-term temporary changes in overall demand, the 

system operator must compensate or ñregulateò the grid using fast responding sources. Ancillary 

services products provided by generators deal with these imbalances in electricity markets by 

dispatching resources within seconds or minutes. As the use of intermittent renewable generation 

capacity like wind and solar power has increased, so has the need for these flexible-operation 

regulating or fast responding resources.  



 

 

When Dynegy bids power from Independence Station into the Ancillary Services Regulation 

market, it qualifies that energy in terms of ñramp rateò capability (in MWs per minute) and 

maximum sustained ramp (in MWs) available.   

The plant began bidding its power into the Ancillary Services Regulation market in 2010. Prior 

to 2010, the Independence plant was dispatched like most other combined cycle plants with duct 

burners. Historically, the plant used its duct burners only when demand and power prices were 

high. The increment of duct burner power was generally offered into the NYISO Energy market 

at a significantly higher cost because the supplementary-fired duct burners provide power at a 

higher heat rate than power from the combined cycle block. Fuel energy released through 

combustion in the duct burners is absorbed only in the Rankine (bottoming) HRSG steam cycle, 

whereas fuel energy released by combustion in the GT is absorbed by both the Brayton (topping) 

cycle and the Rankine (bottoming) cycle.  

Each gas turbine can ramp up at 5-6 MW per minute.  In contrast, the steam turbine has a much 

slower ramp rate of 1-2 MW/min, and steam turbine output can lag energy input from gas turbine 

exhaust or duct burner firing by as much as 30 minutes. 

 

Figure 6-1 
Differences in Heat Rate between Steam Cycle and Combined Cycle  

Figure 6-1 shows the effect of diverting fuel directly to the HRSG via Duct Burner combustion. 

The duct burner produces power at a heat rate of ~9,000 Btu/kWh (9,496 kJ/kWh) while the 

combined cycle produces power at the heat rate of ~7,500 Btu/kWh (7,913 kJ/kWh). The Duct 

Burner is used to boost ST output to compensate for the partially-loaded GT. The circled green 

power output bar represents a GT with some reserve capacity to provide fast ramp rate power, if 

necessary. Note the heat rate of duct burner power is greater than the heat rate of the combined 

cycle.  Figure 6-2 shows a typical demand curve and the occasional use of duct burners. In 

Figure 6-2, the 30-minute period shaded in green represents the time when the duct burner is 



 

optimally online. It needs to come online 30 minutes before the demand goes over the dotted line 

(max MW capability of the GTs only) to account for the lag of output from the steam turbine .  

The principle of the original modified operation and control is shown in Figure 6-1 looking at the 

green ñpower barsò.  The gas turbine was kept at partial load with some fuel diverted to the duct 

burner. With the duct burners deployed before the gas turbine has reached full load, some high 

ramp rate capacity (from the gas turbine) is available to be bid and dispatched into the Ancillary 

Services Regulation market when needed.  The plant is more capable of responding at high ramp 

rates so it obtains a higher capacity factor, albeit at a higher heat rate.  At Independence, it is 

believed the ability to offer higher total MW capability, and a large total increment of high (GT-

like) ramp rate regulation service, led to a significantly improved overall capacity factor and 

improved overall economics for the plant.  

Initially, plant engineering staff automated duct burner startup and shutdown in 2010 to pursue 

this strategy of reserving plant high ramp rate capability.  Next, a control algorithm was added to 

the existing Metso HRSG control system that starts and stops duct burners based on the GT Inlet 

Guide Vane (IGV) angle and controls duct burner (DB) fuel flow based on unit demand, 

combined with fixed assumptions about how much DB energy is needed in a worst case ramp-

up.  This control scheme was initially set conservatively to ensure NYISO demand was always 

capable of being met, as shown in Figure 6-3. The yellow shaded period shows the time that the 

duct burners operate with this initial control scheme, which is much greater than what is required 

(green shaded period). 

Despite the significant cost increase associated with this conservative mode of operation, the 

revenue gain resulting from offering additional high-ramp-rate capability more than offsets the 

elevated cost.  To further optimize operations, Dynegy recognized unit capabilities could be 

adjusted for ambient conditions and equipment health.  Additionally, due to the steam turbine 

output lag following duct burner ignition, a predictive view of future ramp rate and output level 

had the potential to unlock additional value and provide optimization.  

In discussions NeuCo had with the Independence plant in early 2013, the plant indicated that 

they knew they were running with more duct burner input than necessary to meet the NYISO 

demand, and they were cycling the duct burners more than they would be if they had some 

prediction of the demand signal over the next thirty minutes. NeuCo took up the challenge of 

exploring the usefulness of machine learning to augment the duct burner dispatch algorithm by 

providing additional information.  

Figure 6-2, Figure 6-3, and Figure 6-4 show the automated duct burner operation challenge and 

the principle of the optimization.  Figure 6-4 shows the idealized operation of the duct burner 

after implementation of the NeuCo optimizer. Here, a prediction of the ñ30 minute max of 

NYISO demandò (violet dotted line) is generated and the duct burners are fired up only after this 

line is greater than the max capability of the GTs (red dotted line). In this way, the operational 

period for the duct burners (yellow shaded area) is reduced compared to the yellow area in 

Figure 6-3. 



 

 

 

Figure 6-2 
Typical Demand Curve  

Note Duct Burner energy is only needed when the plant gets ramped above the GT only capability line, at GT ramp 

rate. Because it takes about 30 minutes to fully add a Duct Burnerôs energy, the challenge is in predicting demand up 

to 30 minutes in the future. Another challenge is predicting how much of that energy is needed. 

 

 

Figure 6-3 
Ini tial (Conservative) Approach for Faster Response  

Note the conservative (historical) approach to staging the plant for possible NYISO demand ramp involves turning 

the Duct Burners on very early to cover the entire potential high demand period. 

 



 

 

Figure 6-4 
Optimized Control Strategy  

Note being able to predict the likely NYISO demand for the next 30 minutes and thus bound demand optimizes DB 

usage. 

Description of Software Technology  

ProcessLink is NeuCoós on-line analytics, modeling and optimization platform based on the 

vision that:  

a) Artificial Intelligence (AI) technologies need to be plugged directly into data-streams; their 

utility is largely unexplored territory, but they usually require ensemble or hybrid approaches 

and must be capable of cost effective evolution.  

b) Software development should be evolution-like, constrained by the requirement that it 

delivers value in a commercial context. 

ProcessLink is designed to provide an on-line (in situ) analysis, modeling, optimization and 

visualization workbench, tailored to industrial use. It supports a large variety of technologies 

across an integrated architecture allowing for ensemble and hybrid AI approaches to be 

prototyped, deployed, evaluated, and evolved against complex real-world problems.  

The platform uses a combination of neural models, expert systems, first principles models, and 

dynamic optimization as illustrated in Figure 6-5. Neural networks are nonlinear, multivariable 

steady-state models that are used to identify the best combinations of variables under varying 

conditions through observation of data. First principle models are based on scientific laws and 

principles rather than immediate empirical data. Expert systems opportunistically leverage 

known empirical relationships to assemble rule-based models. 

ProcessLink is an enterprise-wide client-server object (click and drag) environment with a C# 

backbone, designed to integrate disparate data sources and support distributed collaboration. The 

optimizer assembled for this application required no new ProcessLink code development. Rather, 

it is an assembly of ready-to-use building blocks wired together, supported by C# scripts where 

needed.  



 

 

ProcessLinkôs early development was partially subsidized by two Department of Energy Clean 

Coal Power Corporate Agreements.  Dynegy was a key participant in one of those projects. 

 

Figure 6-5 
The ProcessLink Platform  

Duct Burner Optimization Application Components  

NeuCoôs ProcessLink software was installed at Dynegyôs Independence Station in March 2013. 

The final optimizer determines the likely maximum ramp-up in the next 30 minutes. It then 

determines how much duct burner energy, if any, should be added to ensure the GTôs are ready 

to meet that request. The major components employed by the optimizer are: 

1) ñMax Likely Demandò (MLD) ï a set of continuously-adapting neural models to predict 

likely future (next 30 minutes) demand variance 

2) ñPlant Max Capabilityò (PMC) ï another set of continuously-adapting neural models 

combined with a simple first-principles model to predict the plantôs maximum 30-minute 

generation response 

3) ñDynamic Plant Modelò (DPM) ï a dynamic model of the time delay relationships between 

the GT and the HRSG-steam turbine generators  

4) ñModel Predictive Controller/Optimizerò (MPC) ï An optimizer that determines optimal 

control trajectories based on a dynamic response model that relates manipulated variables to 

controlled variables (or objectives).  

These different model types and instances are integrated through a closed-loop optimization 

assembly. The resulting hybrid evaluates the likelihood of a specific demand increase in the next 

30 minutes, tests that against the 30 minute capability of the plant given its current configuration 

to determine whether adding or subtracting a duct burner is warranted, then uses a dynamic 

model to schedule the duct burner fuel flow. Inputs to the future demand variance models include 

recent demand history, current demand, day of the week, hour of the day, and gas turbine 



 

generator driven frequency. The neural networks involved retrain daily. The final ensemble 

applies smoothing and tuning terms.  

ñMax Likely Demandò predictor model  

Predicting the future maximum likely demand is done by combining multiple models and 

techniques. Some of the model inputs include: 

¶ Total (combined) output of the GT and ST ï multiple values for this input represent historical 
tap delays. (Note: this is used in place of demand values due to data availability at the start of 

the project and are meant to serve as a proxy for current and historical NYISO demand) 

¶ External forcing frequency of the GT generator ï added at the suggestion of the plantôs 

engineering staff; frequency droop tends to indicate an imminent increase in demand. 

¶ Hour of day ï the most important of the time-related inputs. 

¶ Day of the week ï to include weekday/weekend changes. 

¶ Month ï to include seasonal trends. 

Once the logic was established, the model was tuned based on historical demand data.  Figure 

6-6 compares historical demand (in orange) with an aggressively-tuned ñMax Likely Demandò 

predictor model (in blue). This figure includes a two-day span showing predicted 30 minute 

maximum demand augmented with expert rules related to recent demand ramp. 

 

Figure 6-6 
Typical Historical and Predicted Demand  

The model is further refined with the addition of a tunable ñkicker,ò depicted by the green signal. 

The ñkickerò detects the type of ramp through a combination of fractions of recent positive 

demand changes, which enables the model to respond to available information about a severe 

ramp while it is occurring. The ñkickerò tuning terms allow the user to define the shape of that 

ramp shape-filter + response-amplifier.  Once the model and its tuning were established, the 

modelôs effectiveness to predict historical demand was measured.  

Figure 6-7 shows the plant demand and MW signals along with the maximum predicted plant 

capability with duct burners (light blue) and without (yellow, the GT-only line).  The figure 



 

 

clearly shows during this two-day period where demand required duct burner operation.  The 

ñPlant Max Capabilityò predictor model is discussed later.  The red signal is the final processed 

ñMax Likely Demandò predictor model used by the optimizer.  It has been further conditioned in 

rational ways to minimize the negative effects of prediction error; for instance it must always be 

a minimum (tunable) amount above current demand as an additional backstop.  Also, the amount 

of duct burner headroom needed is set to zero, regardless of the max demand prediction, when 

actual demand is below the GT only capability by a maximum (tunable) amount. 

 

Figure 6-7 
Historical Demand, Prediction, and Available Capacity  

Figure 6-8 shows six hours from the first morning of the two-day span in Figure 6-10. During 

this morning of operation, the plant was operating in regulation mode (at GT ramp rate) and was 

brought across the GT-only capability threshold.    



 

 

Figure 6-8 
Historical Demand, Prediction, and Available Capacity  

Historical  demand and ñMax Likely Demandò predictor model compared with maximum available generation, for 

both  plant GT only and plant with duct burners (total capability) over a six-hour time period. 

Figure 6-9  shows the distribution of 30 minute demand changes over the same six hour interval 

as Figure 6-8. This distribution represents typical morning operations on a fairly high demand 

day (including regulation demand). 

 

Figure 6-9 
Distribution of 30 Minute NYISO Demand Changes Over the 6 Hour Period of Operation Depicted 
in Figure 6-11 

 



 

 

Figure 6-10 shows the NYISO instantaneous Regulation Performance Index (PI) for Ancillary 

Service Providers (in yellow) and the seven-day Regulation PI rolling average (in red). A value 

of 1 indicates perfect performance. NYISO takes action against the generator if the seven-day 

rolling average falls below 0.75. The Performance Index values are calculated in ProcessLink per 

the guidelines in the NYISO Regulation Ancillary Services Settlement Manual, Appendix G7. 

  

Figure 6-10 
Demand and Production for Six -Hour Period of Morning Operation with Regulation Performance 
Index, and Regulation PI 7d Average  

 ñPlant Max Capabilityò predictor model 

A very simple ñPlant Max Capabilityò predictor model was used in the initial optimizer. It 

employed the manufacturer-supplied GT capability correction curves to account for ambient 

temperature. Results from the initial optimizer with the ñMax Likely Demandò predictor model 

and the simple ñPlant Max Capabilityò predictor model looked favorable and in April 2014, a 

beta optimizer version added a new ñPlant Max Capabilityò model. The new model consisted of 

a set of hybrid neural/first-principles models of each GT and Steam Turbine to predict plant 

maximum output capability as a function of the current ambient conditions. 

Figure 6-11 compares one of the neural ñGT Max Capabilityò models with actual GT generation 

over a two-week time span. The GT max prediction shown is a function of current weather 

conditions and one component of the overall plant max capability model. It is depicted here to 

illustrate how a neural network can be used to predict equipment maximum capabilities and how 

error in those predictions can be evaluated.  Figure 6-12 shows the performance of the model in 

terms of over- and under-prediction events, along with the average error in MW for those events. 

Under-prediction occurs when actual output exceeds predicted max output. Over-prediction 

occurs when the GT control state signals indicate the GT is at maximum output, but actual output 

is below the predicted maximum.  



 

 

Figure 6-11 
GT Max Capabilityò Predictor Model Output (as a function of ambient conditions) Compared with 
Actual Generation  

  

 

Figure 6-12 
Under - and Over -prediction Events for ñGT Max Capabilityò Predictor Model  

ñDynamic Plant Modelò 

A ñDynamic Plant Modelò was derived from plant data analysis to characterize the delay, lag and 

gain relationships between fuel flow (to both GT and DB), grid output (plant total output as well 

as GT and ST considered separately) and GT headroom (i.e., available rapid ramp capability in 

the next 30 minutes).  

The final version of the optimizer, shown in Figure 6-13, is currently in service in closed-loop. 

The optimizer now includes the ñDynamic Plant Modelò ñModel Predictive Controller,ò and the 

components specific to benefits assessment (discussed in the ñResultsò section of this document). 

The Model Predictive Controller uses the dynamic plant model and inputs from three major sub-

models to determine required actions. 




